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Practice Final Exam I

We strongly recommend that you work through this exam under realistic conditions rather
than just flipping through the problems and seeing what they look like. Setting aside three
hours in a quiet space with your notes and making a good honest effort to solve all the prob-
lems is one of the single best things you can do to prepare for this exam. It will give you prac-
tice working under time pressure and give you an honest sense of where you stand and what
you need to get some more practice with.

This practice final exam is essentially the final exam from Winter 2018. The sorts of questions
here are representative of what you might expect to get on the upcoming final exam, though the
point balance and distribution of problems might be a bit different.

The exam is closed-book, closed-computer, limited note (one double-sided sheet of 8.5” × 11”
paper decorated however you'd like).

You have three hours to complete this exam. There are 71 total points.

Question Points

(1) Graphs and Pigeonhole / 10

(2) Equivalence Relation, Functions, and Sets / 19

(3) Strict Orders and Induction / 18

(4) Regular Languages / 14

(5) R and RE Languages  / 10

/ 71
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Problem One: Graphs and the Pigeonhole Principle     (10 Points)
(We recommend spending about 40 minutes on this problem.)

On Problem Set Four, you explored bipartite graphs. As a refresher, a graph G = (V, E) is called
bipartite if its nodes can be partitioned into two sets V  and ₁ V  where every edge ₂ e  ∈ E has one
endpoint in V  and the other in ₁ V . This question explores some additional properties of bipartite₂
graphs.

Let’s begin with a new definition. If G = (V, E) is an undirected graph, the complement of G, de-
noted Gc, is a graph related to the original graph G. Intuitively, Gc has the same nodes as G, and
its edges consist of all the edges missing from graph G. Formally speaking, Gc is the graph with
the same nodes as G and with edges determined as follows: the edge {u, v} is present in Gc if and
only if u ≠ v and the edge {u, v} is not present in G. As an example, here's a sample graph and its
complement:

a b

c d e

a b

c d e

Prove that if G is a graph with at least five nodes, then at least one of G and Gc is not bipartite.
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Problem Two: Equivalence Relations, Functions, and Sets  (19 Points)
(We recommend spending about 40 minutes on this problem.)

Equivalence relations are a workhorse in discrete mathematics and can be used to rigorously pin
down all sorts of structures. This problem explores an important operation on equivalence rela-
tions and its properties.

Let’s begin with a refresher on a definition. If R is an equivalence relation over a set A and x  ∈ A,
then the equivalence class of x with respect to R, denoted [x]R, is the set

[x]R   =   { y  ∈ A | xRy }.

Intuitively, [x]R consists of all the elements of A that x is related to by R.

Now, a new definition. If R is an equivalence relation over a set A, then the set A / R is the set of
all the equivalence classes of the elements of A. Formally speaking, we say that

A / R   =   { [x]R | x  ∈ A }.

This set is sometimes called the quotient set of R.

i. (3 Points) Consider the following binary relation E over the set ℕ2:

(m , ₁ n ) ₁ E (m , ₂ n )      if      ₂ m  + ₁ m  is even and ₂ n  + ₁ n  is even.₂

(Remember that this “if” means “is defined as” and is not an implication.)

What is |ℕ2 / E|? Briefly justify your answer, but no formal proof is required.
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Here’s a terminology refresher from the previous page:

[x]R   =   { y  ∈ A | xRy }                                   A / R   =   { [x]R | x  ∈ A }.

Although equivalence relations come in all sorts of shapes and flavors, there is a single equiva-
lence relation that’s, in some sense, the “most fundamental” equivalence relation: the equality re-
lation. In the remainder of this problem, you’ll show that every equivalence relation’s behavior
can be thought of as the behavior of the equals relation over some well-chosen collection of sets.

Let R be an equivalence relation over a set A. We can define a function f : A → A / R as follows:

f(x) = [x]R.

That is, f maps each element of A to its equivalence class.

ii. (3 Points) Below are a series of statements about the behavior of this function f. For each
statement, decide whether that statement is always true regardless of what  R is, always
false regardless of what R is, or whether it depends on the choice of R. (Remember that R
is  assumed to  be  an  equivalence  relation.)  No justification  is  necessary.  There  is  no
penalty for an incorrect guess.

The function f is injective.

 True, regardless of what ☐ R is.            False, regardless of what ☐ R is.            It depends on ☐ R.

The function f is surjective.

 True, regardless of what ☐ R is.            False, regardless of what ☐ R is.            It depends on ☐ R.

The function f is bijective.

 True, regardless of what ☐ R is.            False, regardless of what ☐ R is.            It depends on ☐ R.
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As a refresher from the previous page, we’ve let R be an equivalence relation over some set A.
We’ve used the following terminology:

[x]R   =   { y  ∈ A | xRy }                                   A / R   =   { [x]R | x  ∈ A }.

We’ve also let f : A → A / R be a function defined as f(x) = [x]R.

This function has a wonderful property:

For any a  ∈ A and any b  ∈ A, we have aRb if and only if f(a) = f(b).

In the next two parts of this problem, we’d like you to prove this.

iii. (5 Points) Using a proof by contrapositive, prove that for any a, b  ∈ A that if f(a) = f(b),
then aRb.

Feel free to use this space for scratch work. There’s room to write your answer on the
next page of this exam.
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(Extra space for your answer to Problem Two, Part (iii), if you need it.)
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As a refresher from the previous page, we’ve let R be an equivalence relation over some set A.
We’ve used the following terminology:

[x]R   =   { y  ∈ A | xRy }                                   A / R   =   { [x]R | x  ∈ A }.

We’ve also let f : A → A / R be a function defined as f(x) = [x]R.

iv. (8 Points) Prove that if a, b  ∈ A and aRb, then f(a) = f(b). As a hint, how do you show
that two sets are equal to one another?

Feel free to use this space for scratch work. There’s room to write your answer on the
next page of this exam.



8 / 17

(Extra space for your answer to Problem Two, Part (iv), if you need it.)
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Problem Three: Strict Orders and Induction  (18 Points)
(We recommend spending about 35 minutes on this problem.)

Let’s begin with a new definition. If  R and S are binary relations over the same set A, then the
composition of R and S, denoted R  ∘ S, is a binary relation over A defined as follows:

x(R  ∘ S)y    if    ∃z  ∈ A. (xRz  ∧ zSy).

Having defined the composition of two relations, we can inductively define the nth power of a
binary relation R over a set A as follows:

xR1y if    xRy

xRn+1y if    x(R  ∘ Rn)y

Remember that the word “if” in the above contexts means “is defined as” and is not an implica-
tion, and note that Rn is only defined when n ≥ 1.

i. (3 Points) Below is a drawing of a binary relation R over the set {a, b, c, d}. In the indi-
cated space, draw a picture of R2. No justification is necessary.

The relation R. Draw R2 here.

a b

dc

a b

dc
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As refreshers from the previous page, if R and S are binary relations over the same set A, then the
relation R  ∘ S is a binary relation over A defined as follows:

x(R  ∘ S)y    if    ∃z  ∈ A. (xRz  ∧ zSy).

The nth power of a binary relation R over a set A is defined as follows:

xR1y if    xRy

xRn+1y if    x(R  ∘ Rn)y

Remember that the word “if” in the above contexts means “is defined as” and is not an implica-
tion, and note that Rn is only defined when n ≥ 1.

ii. (15 Points) Consider the < relation over the set . Prove that the following is true for allℝ
nonzero natural numbers n:

∀x  ∈ ℝ. ∀y  ∈ ℝ. (x < y   ↔   x <n y).

Feel free to use the inequality a < a+b
2 < b , which is true for any real numbers a and b

where a < b. You can assume that the < relation over  is a strict order.ℝ
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(Extra space for your answer to Problem Three, Part (ii), if you need it.)
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Problem Four: Regular and Languages         (14 Points)
(We recommend spending about 45 minutes on this problem.)

If you’re living in a world where the only legal arithmetical operation is addition, you can write
out a bunch of different expressions that evaluate to odd numbers:

• 3

• 6 + 3

• 3 + 3 + 3

• 6 + 3 + 6 + 3 + 6 + 3 + 6

• 6 + 6 + 6 + 3 + 6 + 6

• 3 + 3 + 3 + 3 + 3

Let Σ = { 3, 6, + } and consider the following language L  over Σ:₁

L  = { ₁ w  Σ* | ∈ w doesn’t use any numbers besides 3 and 6 and evaluates to an odd number. }

All of the strings shown above are in L . Here’s a sampler of strings that ₁ aren’t in L :₁

• 6     (this is an even number)

• 6 + 6     (this is an even number)

• 63     (no multidigit numbers)

• + 6     (syntactically invalid)

• 6 ++ 6   (syntactically invalid)

• ε     (not a valid expression)

This turns out to be a regular language.

i. (3 Points) Design an NFA for L . In the space at the bottom of the page, write a brief ex₁ -
planation (at most two sentences) for how your NFA works.

Explanation for this NFA (at most two sentences):
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Consider the following regular expression over the alphabet {a, b}:

Σ?(a+b   b*)*∪
This question explores some properties of this regular expression.

ii. (4 Points) Below are four NFAs over the alphabet {a, b}. For each NFA, decide whether
the language of that NFA is the same as the language described by the above regular ex-
pression. No justification is necessary. There is no penalty for an incorrect guess.

  

 

Does this NFA have the same language
as the above regular expression?

 Yes                       No☐ ☐

Does this NFA have the same language
as the above regular expression?

 Yes                       No☐ ☐

Does this NFA have the same language
as the above regular expression?

 Yes                       No☐ ☐

Does this NFA have the same language
as the above regular expression?

 Yes                       No☐ ☐
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Let Σ = {a, b} and consider the finite language L  = {ε, ₂ a}.

iii. (7 Points) Design a DFA for L  that is as small as possible. Then, prove that your DFA is₂
as small as possible by using the following theorem that you proved on Problem Set
Seven:

Theorem: Let L be a language over Σ. Suppose there's a finite set S such that any two
distinct strings x, y  ∈ S are distinguishable relative to L (that is, x ≢≢L y for any two strings

x, y  ∈ S where x ≠ y.) Then any DFA for L must have at least |S| states.

Feel free to use the space below for scratch work. There’s room to write your answer on
the next page of this exam.
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(Extra space for your answer to Problem Four, Part (iii), if you need it.)
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Problem Five: R and RE Languages             (10 Points)
(We recommend spending about 20 minutes on this problem.)

Over the past two weeks you’ve seen your fair share of undecidable problems. If a problem is un-
decidable, then there’s no way to build a TM for that problem that always halts and gives the
right answer. However, it’s still possible to write a program for an undecidable problem that can
get the right answer on many possible inputs – just not all of them.

Here are two new definitions. If L is a language over Σ, then a sound approximation to L is a
language S over Σ such that S  ⊆ L and a complete approximation of L is a language C over Σ
such that L ⊆ C.

i. (3 Points) Briefly explain why every language has a decidable sound approximation and
a decidable complete approximation. This shows that even if a language is undecidable,
it’s still possible to build a TM that can provide the right answers on some number of
strings.
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ii. (7 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of numbered languages. For each of
those languages, draw where in the Venn diagram that language belongs. As an example,
we've indicated where Language 1 and Language 2 should go. No proofs or justifications
are necessary, and there is no penalty for an incorrect guess.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { anbm | n  ∈ ℕ and m  ∈ ℕ }

4. { ⟨T  | ⟩ T is a tournament and the players in T are the CS103 staff members }

5. { ⟨P  | ⟩ P is a syntactically correct Java program whose source code
{ ⟨P  | ⟩ contains the string quokka }

6. { ⟨P  | ⟩ P is a syntactically correct Java program that, when run,
{ ⟨P  | ⟩ at some point prints the string quokka }

7. { ⟨P  | ⟩ P is a syntactically correct Java program that, when run,
{ ⟨P  | ⟩ never prints the string quokka }

8. The intersection of languages (5) and (6).

9. { w | w  ∈ LD }


